FOLSOM WATER VISION WORKSHOP #4

Future Water Supply Portfolios

0

0

OCTOBER 15, 2024 | 6:30 - 8:30PM

MUSC

Agenda

- I. Brief Project Recap
- **II. Overview of Evaluation Criteria**

III. Future Portfolios Evaluations

IV. What's Next

A Brief Project Recap

Where have we been, where are we now, and where are we going?

Our Progress

Where have we been?

Identify Community Values & Objectives

- High-quality.
- Affordable.
- Reliable supply.
- Resilient system.
- Efficient water use.

2 Evaluate the Existing Water Supply System

- Sufficient water rights to meet buildout demand.
- Top risk to water supply is low Folsom Reservoir levels.
- Identified key water supply infrastructure.
- Identified infrastructure vulnerabilities at raw water pipeline & water treatment plant.

Screen New Potential Water Supplies

 WSC evaluated 18 potential supply alternatives.

3

- WSC/City eliminated 6 of those alternatives due to cost and feasibility.
- Feedback and discussion focused on the remaining 12 alternatives.

Ο

Since we last met, we have

- Reviewed your feedback.
- Groups project alternatives.
- Calculated lifecycle costs for alternatives.
- Created 4 preliminary water supply portfolios.
- Evaluated portfolios using criteria.

Tonight's Goal:

Identify the preferred future supply portfolio(s) and what refinements should be evaluated.

Our Task:

Ο

Communicate the portfolio evaluation process and the preliminary portfolios.

Your Task:

 \bigcirc

Share feedback on the preliminary portfolios.

What Comes Next? 6 **Define the Recommended Develop a Timetable for** Implementation **Portfolio** 0 Refine the top one or two portfolios based on the feedback we hear tonight. Ο • Provide a more detailed analysis on the selected portfolio(s). Develop a preliminary implementation plan for selected portfolio(s). 0

Overview of Evaluation Criteria

Evaluation Criteria

Reliability Rating

Description:

Scores the ability of the portfolio to consistently provide water in drought conditions.

Scoring & Scoring Criteria:

Based on the amount of demand the portfolio can provide at low water levels in Folsom Reservoir.

Addresses drought vulnerabilities

3-High	2-Medium	1-Low
Provides 100% of projected	Provides more than 85% of	Provides less than 85% of projected
buildout demands during extreme	projected buildout demands during	buildout demands during extreme
drought events.	extreme drought events.	drought events.

Ο

Resiliency Rating

Addresses infrastructure and catastrophic

events

Description:

Measures the ability of the portfolio to provide drinking water in the face of catastrophic events and/or major infrastructure failures.

Scoring & Scoring Criteria:

Scoring is based on **the average risk scores for the 3 events**, which measures the impact to the system if a selected event were to occur.

3-High2-Medium1-LowPortfolio has a low risk of the
selected events having a significant
impact on the system.Portfolio has a medium risk of the
selected events having a significant
impact on the system.Portfolio has a high risk of the
selected events having a significant
impact on the system.

Risk = Probability x Impact

Risk is the calculated as the probability that an event will happen times the impact that event will have on the system.

3 Selected Events:

- Critical pipeline failure
- Water treatment process failure
- Folsom Reservoir below 280-feet elevation

	3-High	2-Medium	1-Low
Probability	Event estimated to occur three times or more in a 50- year period.	Event estimated to occur 1-2 times in a 50-year period.	Event estimated to occur one time or less every 50 years.
Impact	Event affects more than 80% of the City's customers.	Event affects between 25% and 80% of the City's customers.	Event affects less than 25% of the City's customers.
	0		

Risk Score Example

Using the Existing Supply Portfolio:

Risk Score Example

Adding redundancy at the water treatment plant **lowers** the impact

Water Quality Impact Rating

 \bigcap

Description:

Evaluates the anticipated change in water quality.

Scoring & Scoring Criteria:

Categorized as no impact, minor impact, or major impact.

3-No Impact	2-Minor Impact	1-Major Impact
No new source of water (e.g., only water source is Folsom Reservoir)	New source(s) primarily has the same WQ as Reservoir (e.g., American River, Folsom South Canal)	New source with different WQ (e.g., Groundwater)

Description:

Comparatively rates of the portfolio's total costs over its entire lifecycle to those of the most cost-effective alternative.

Scoring & Scoring Criteria:

Rating is calculated by taking the ratio of the total lifecycle cost of the water portfolio to the lifecycle cost of the lowest-cost portfolio available. A rating of 3 indicates that the portfolio is the most cost-effective option.

3-High	2-Medium	1-Low
Lowest cost portfolio is given a rating of a 3.	Ratio of the portfolio's lifecycle cost to the lowest cost portfolio. Costs of portfolios in between are scored between 1 and 3 based on cost ratios.	Highest cost portfolio is rated as a 1.

Description:

Assesses the expected ease of constructing the portfolio.

Scoring & Scoring Criteria:

Based on the permitting requirements, number of stakeholders required to complete the portfolio, and the anticipated implementation timeline.

3-Easy	2-Medium	1-Hard
No permitting required	State/local permitting	Federal permitting
OR No additional stakeholders	OR 1 agency stakeholder	OR 2+ agency stakeholder
AND implementation timeline <5	AND implementation timeline of 5-	AND implementation timeline >10
years	10 years	years

Ο

Stakeholder Ranking

Stakeholders ranked the criteria from most to least important. A ranking of 5 was least important, while 1 was most important. Below is a summary of the results we received.

Ranking	1	2	3	4	5	Total
Resiliency	10	8	2	2	1	23
Implementation	0	1	2	11	9	23
Lifecycle Cost	0	2	4	7	10	23
Reliability	9	10	3	1	0	23
Water Quality Impact	4	2	12	2	3	23

 \bigcirc

Evaluation Criteria Weighting

Criteria	Weighting	Description C
	ITY 4.2	Scores the ability of the portfolio to consistently provide water in drought conditions.
	CY 4.0	Measures the ability of the portfolio to provide drinking water in the face of catastrophic events and/or major infrastructure failures.
WATER Q IMPACT	UALITY 3.1	Evaluates the anticipated change in water quality.
	E COST 1.9	Comparatively rates of the portfolio's total costs over its entire lifecycle to those of the most cost-effective alternative.
	ENTATION 1.8	Assesses the expected ease of constructing the portfolio.

Future Portfolios Evaluations

Supply Projects Evaluated

Screened Out due to high costs, feasibility issues, or because they do not address system vulnerabilities.

Workshop 3 Feedback

Incorporating Your Feedback

Incorporating Your Feedback

Developing Portfolios

	SURFACE WATER FOCUSED	GROUNDWATER FOCUSED
BASE	 IMPROVED INFRASTRUCTURE Additional Emergency Interties Aerojet Remediated Groundwater Redundant Raw Water Pipeline Added Redundancy at the Water Treatment Plant 	GROUNDWATER • New Groundwater Wellfield
ENHANCED	 ENHANCED SURFACE WATER New Surface Water Intake Aerojet Remediated Groundwater Added Redundancy at the Water Treatment Plant 	 ENHANCED GROUNDWATER New Groundwater Wellfield Aerojet Remediated Groundwater Added Redundancy at the Water Treatment Plant

Share Your Feedback

Comment Cards:

Use your comment card to indicate if or you are supportive of each recommendation.

0

30

• Give the City feedback or ask us questions.

Baseline (Existing) Portfolio

Description:

Water is drawn from the lake at Folsom Dam, after which it is treated at the treatment plant and then enters the distribution system.

The non-potable water from Aerojet's GET A-B wells is not in use in the existing portfolio.

Baseline (Existing) Portfolio

Supply Yield Estimates:

Evaluation Criteria:

Criteria	Rating	Weight	Score
Reliability	1	4.2	4.2
Resiliency	1	4	4.0
Water Quality Impact	3	3.1	9.3
Implementation	3	1.8	5.4
Lifecycle Cost	3	1.9	5.7
Average Evalua	5.7		

Additional Considerations:

Relies on a single primary supply source and is vulnerable to future lake levels.

- If the lake drops below the intake level (335-ft), it requires 10 floating pumps to deliver supply.
- If the lake were to ever drop below elevation 280-ft, City could lose its water supply.

Improved Infrastructure Portfolio

Description:

Focuses on infrastructure improvements by adding new interties, a redundant raw water pipeline, and redundancy at the water treatment plant.

Aerojet's GET A-B wells is also established as a non-potable water source.

Lifecycle Cost:

Capital Cost	Lifecycle O&M	Total Lifecycle
\$55.2	\$25.0	\$80.2

*Cost are in millions of 2024 dollars.

Concept Rate Impact of Portfolio: \$15/month

Improved Infrastructure Portfolio

Supply Yield Estimates:

Evaluation Criteria:

Criteria	Rating	Weight	Score
Reliability	2	4.2	8.4
Resiliency	2.7	4	10.9
Water Quality Impact	3	3.1	9.3
Implementation	2	1.8	3.6
Lifecycle Cost	3	1.9	5.7
Average Evalua	7.6		

Additional Considerations:

Still reliant on a single primary supply source and is vulnerable to future lake levels.

Future considerations could include:

• Evaluate which interties to upsize or add that provide the most value to the City.

Enhanced Surface Water Portfolio

Description:

Focuses on bolstering the City's surface water supply by adding a new surface water intake and redundancy at the water treatment plant.

Aerojet's GET A-B wells is also established as a non-potable water source.

Lifecycle Cost:

Capital Cost	Lifecycle O&M	Total Lifecycle
\$95 to \$169	\$43 to \$45	\$138 to \$214

*Cost are in millions of 2024 dollars.

** Alt 1 is higher cost and Alt 2 is lower cost.

Concept Rate Impact of Portfolio: \$25 to \$45/month

Enhanced Surface Water Portfolio

Supply Yield Estimates:

Evaluation Criteria:

Criteria	Rating Weight		Score	
Reliability	2	4.2	8.4	
Resiliency	2.4 – 2.7	4	9.7 – 10.9	
Water Quality Impact	2	3.1	6.2	
Implementation	1 – 2.0	1.8	1.8 – 3.6	
Lifecycle Cost	1.4 – 2.3	1.9	2.6 - 4.4	
Average Evalua	6.0 - 6.5			

Additional Considerations:

Still reliant on a single primary supply source and is vulnerable to future lake levels.

Future considerations could include:

• Invest in a new intake downstream of the dam or a Folsom South Canal intake?

Groundwater Portfolio

Description:

Adds groundwater to the City's water supply portfolio. This independent source of supply adds both reliability and resiliency to the City's supply portfolio.

Lifecycle Cost:

Capital Cost	Lifecycle O&M	Total Lifecycle
\$72 to \$173	\$14 to \$39	\$86 to \$213

*Cost are in millions of 2024 dollars.

** Alt 1 is lower cost and Alt 2 is higher cost.

Concept Rate Impact of Portfolio: \$20 to \$45/month

Groundwater Portfolio

Folsom Reservoir
100%Groundwater
Supply
38%Folsom Reservoir
62%Groundwater
Supply
38%Folsom Reservoir
62%Extreme Drought Year

Evaluation Criteria:

Criteria	Rating Weight		Score	
Reliability	3	4.2	12.6	
Resiliency	2.15	4	8.6	
Water Quality Impact	1	3.1	3.1	
Implementation	1	1.8	1.8	
Lifecycle Cost	1.4 – 2.9	1.9	2.7 – 5.6	
Average Evalua	5.8 - 6.3			

Additional Considerations:

Groundwater provides a separate source of supply

Future considerations could include:

Supply Yield Estimates:

- Analysis of North County vs. South County wellfields.
- Study potential locations to connect the wellfield to the existing water system.
- Evaluate system isolation alternatives for key businesses.

Enhanced Groundwater Portfolio

Description:

Adds groundwater to the City's portfolio and resiliency to the City's existing supply sources by building redundancy at the water treatment plant.

Aerojet's GET A-B wells is also established as a non-potable water source.

Lifecycle Cost:

Capital Cost	Lifecycle O&M	Total Lifecycle
\$84 to \$185	\$36 to \$61	\$120 to \$247

*Cost are in millions of 2024 dollars.

** Alt 1 is lower cost and Alt 2 is higher cost.

Concept Rate Impact of Portfolio: \$25 to \$50/month

Enhanced Groundwater Portfolio

Supply Yield Estimates:

Evaluation Criteria:

Criteria	Rating Weight		Score	
Reliability	3 4.2		12.6	
Resiliency	3	4	12.0	
Water Quality Impact	1	3.1	3.1	
Implementation	1	1.8	1.8	
Lifecycle Cost	1 – 2.5	1.9	1.9 – 4.8	
Average Evalua	6.3 - 6.9			

Additional Considerations:

Groundwater provides a separate source of supply

Future considerations could include:

- Analysis of North County vs. South County wellfields.
- Study potential locations to connect the wellfield to the existing water system.
- Evaluate system isolation alternatives for key businesses.

Summary Slide

Portfolio	Baseline (Existing)	Improved Infrastructure	Enhanced Surface Water	Groundwater	Enhanced Groundwater
Lifecycle Cost	N/A	\$ 80 million	\$ 215 million	\$86 to 213 million	\$ 120 to 247 million
Extreme Drought Supply Yield	82% of buildout demand	94% of buildout demand	94% of buildout demand	100% of buildout demand	100% of buildout demand
Evaluation Score	5.7	7.6	6.0 - 6.5	5.8 - 6.3	6.3 – 6.9
Benefits	No rate or water quality impacts.	No water quality impacts. Increased reliability and resiliency.	Same as Improved Infrastructure with greater resiliency.	Groundwater provides a separate, drought resistant supply source and allows for water banking during wet/average years.	Same as Groundwater portfolio, plus added resiliency to existing surface water system.
Detractors	Relies on a single supply source that is vulnerable in droughts.	Still relies on a single supply source that is vulnerable in droughts.	Still relies on a single supply source that is vulnerable in droughts.	Groundwater supplies would change water quality but can use valve to limit where groundwater is used.	Groundwater supplies would change water quality but can use valve to limit where groundwater is used.

What's Next?

Next Steps

1 Technical team will develop recommended supply portfolios and preliminary implementation plan.

Thanks for Attending!

44

Supply Assumptions

Moderate drought = drier water year type as defined by the Water Forum Agreement (WFA).

 Folsom Reservoir usage reduced to between 22,000 and 27,000 acre-feet

Extreme drought = driest water year type as defined by the Water Forum Agreement.

- Folsom Reservoir usage reduced to 20,000 acre-feet during a driest year.
- Folsom Reservoir may to drop below minimum existing intake level for a couple months, requiring the barge or an alternative intake to draw water.

- Our analysis assumes that regional cutbacks and USBR management will keep Folsom Reservoir above its deadpool elevation of 280 (when essentially no water can be pulled from the lake) during extreme drought years.
- Existing Golden State Water Company intertie has a capacity of up to 2,000 acre-feet per year even during drought conditions.

Rate Impact Costs Assumptions

These calculations are conservative and do not take into account existing rates, grants, or other taxes that offset rate increases.

$RI = \frac{(C_a + 0 \& Ma)}{(nconnections x 12 months)}$

where:

 C_a = Estimated Capital Cost, annualized $O&M_a$ = Expected average annual operations and maintenance cost $n_{connections}$ = Number of customer connections in the City's system